img-14
img-16
img-18
WP QUADS PRO
img-36
img-38
img-40
WP QUADS PRO

Park Jihyo

the early talent and skills of Park Jihyo, known mononymously as Jihyo. Jihyo is a South Korean singer and dancer. She is the leader and vocalist of the South Korean girl group Twice, formed by JYP Entertainment.

Paul Newman-owned Rolex Daytona Heads to Auction

written by: Simon de Burton

No watch at auction has ever created as much media hype as a scuffed up 1968 Rolex Daytona, given as a gift to Hollywood icon Paul Newman by his wife, which achieved a world record price of $17.75 million in 2017.

fom tooley social media influencer creative content creator digital creator pinterest instagram facebook linkedin twitter follow patrick scheidegger artist musician developer full stack designer for hire advertise with advertising ads awin adsense advertise here contact fomtooley.com influencer publisher writer content creation creative creator influencer social media patrick.scheidegger p_scheidegger scheidegger patrick influencer content writer and publisher and creator and profile public contact via website fomtooley.com/contact

Arguably, that sale also triggered the frenzy of demand for Rolex watches that has transformed the entire watch market ever since.

With power like that, it is little wonder that a second Rolex Daytona, once owned by Paul Newman, is likely to set the auction world alight when the watch goes across the block at Sotheby’s in December.

Unlike the $17m Daytona, the Rolex in question is not one that Mr Newman is known to have worn regularly, and was given away as a gift to a fellow racing enthusiast, Hollywood daredevil and stuntman who doubled for the actor in several movies, leading to them becoming close friends.Stan Barrett with Paul Newman enjoy stock car racing together.

Stan Barrett with Paul Newman enjoy stock car racing together.
Stan Barrett with Paul Newman enjoy stock car racing together.

The daredevil in question is Stan Barrett, whose adrenaline-seeking led him to attempt to become the first person to break the speed of sound on land in 1979, travelling at more than 700 mph in the Budweiser Rocket Car.

WATCHPRO columnist Simon de Burton picks up the story of Mr Newman and his double Mr Barrett, and finds out why a pair of steel Rolex watches worn during the Rocket Car attempt could realize more than $600,000 when they cross the block at Sotheby’s in December.

During the final run at Edwards Air Force Base in California on 17 December 1979, Stan Barrett wore the Cosmograph Daytona and GMT-Master.Stan Barrett wearing both the Rolex and GMT Master on one wrist. (picture courtesy Courtesy of Stan Barrett and RolexMagazine.com)

Stan Barrett wearing both the Rolex and GMT Master on one wrist. (picture courtesy Courtesy of Stan Barrett and RolexMagazine.com)
Stan Barrett wearing both the Rolex and GMT Master on one wrist. (picture courtesy Courtesy of Stan Barrett and RolexMagazine.com)

Afterwards, he was presented with a gold GMT-Master by August Busch, CEO of Anheuser-Busch, the main sponsor of the Budweiser Rocket Car and ‘Project Speed of Sound’.

That watch will also be auctioned and could realize $100,000, with a percentage of the money from the sale of all three pieces going to a Ukraine children’s charity that Mr Barrett has supported since 1987.This golden Rolex Reference 1675 GMT-Master was given to Stan Barrett by August Busch, CEO of Anheuser-Busch, the main sponsor of the Budweiser Rocket Car.

But the estimates for the two steel watches could prove conservative – because both were given to Mr Barrett by Hollywood idol Paul Newman, his best friend of 40 years and the godfather to his sons: NASCAR racing driver Stanton and television producer David.

This golden Rolex Reference 1675 GMT-Master was given to Stan Barrett by August Busch, CEO of Anheuser-Busch, the main sponsor of the Budweiser Rocket Car.
This golden Rolex Reference 1675 GMT-Master was given to Stan Barrett by August Busch, CEO of Anheuser-Busch, the main sponsor of the Budweiser Rocket Car.

As is well known, a Rolex Daytona gifted to Mr Newman by wife Joanne Woodward remains the most expensive wrist watch ever auctioned following its sale for $17.7m at Phillips New York five years ago. As a result, any Rolex with a connection to the Hollywood legend is now deemed ultra-valuable – and the latest two to come to market should be no exception.

Although 18 years Mr Newman’s junior, Mr Barrett formed a close relationship with the star after working as his main stuntman on numerous films, starting with Sometimes a Great Notion in 1971. Barrett was particularly well suited to the job due to his remarkable resemblance to Newman.This Rolex Reference 1675 GMT-Master Pepsi was on Stan Barrett’s wrist during the Rocket Car attempt.

This Rolex Reference 1675 GMT-Master Pepsi was on Stan Barrett’s wrist during the Rocket Car attempt.
This Rolex Reference 1675 GMT-Master Pepsi was on Stan Barrett’s wrist during the Rocket Car attempt.

Speaking by telephone from his Bellevue, Idaho, home in an exclusive interview for WATCHPRO, Mr Barrett said that Mr Newman had given him the Daytona watch immediately on hearing about the proposed record attempt. “We were at his home in Connecticut and he just went upstairs and came down with the Daytona. He could be very funny about me having the right watch to wear, and was always extremely generous.

“About four years earlier, after he had given me the GMT-Master, I bought the same model for my father – but it got stolen. The next thing we know, my father receives a replacement from Paul in the mail.”

Insatiable horophile Mr Newman gifted several watches to Mr Barrett throughout the friendship, including a Breitling Navitimer. “That time I had arrived at his house without a watch on,” recalls Mr Barrett. “Again, he went upstairs, and came down with this Breitling – and when he handed it over to me he said ‘Stan, be careful where you wear it. It was a present from Bruce Willis’.”

But it is the Rolex GMT-Master and Cosmograph Daytona now up for sale that are more interesting – not least since the former is tipped to realize $50,000-100,000, while the latter could achieve as much as $500,000.Stan Barrett wore this Rolex Reference 6262 Stan Barrett’s Rolex Daytona is expected to sell for up to $500,000.

Stan Barrett wore this Rolex Reference 6262 Stan Barrett’s Rolex Daytona is expected to sell for up to $500,000.
Stan Barrett wore this Rolex Reference 6262 Stan Barrett’s Rolex Daytona is expected to sell for up to $500,000.

While Mr Newman was photographed trying the Budweiser Rocket Car for size during practice sessions at Bonneville Salt Flats earlier in the year, he refused to watch the run proper.

“Paul called me after the Bonneville runs – during one of which the car’s canopy blew off at 600 mph – and he said ‘Stan, look, I want to support you, but everyone says you aren’t going to make it. And I don’t want to watch you die’,” recalls Mr Barrett.

To keep Mr Newman by his side in spirit, Mr Barrett strapped both gifted watches to his left wrist – and that is where they remained while he drove the rocket car to an unofficial 739.66 mph; a speed that, if accurate, would have made him the first person to break the sound barrier on land.The Budweiser Rocket Car unofficially broke the world land speed record. (Picture courtesy of Department of Defense photo by MSGT Paul J. Harrington)

The Budweiser Rocket Car unofficially broke the world land speed record. (Picture courtesy of Department of Defense photo by MSGT Paul J. Harrington)
The Budweiser Rocket Car unofficially broke the world land speed record. (Picture courtesy of Department of Defense photo by MSGT Paul J. Harrington)

But the record remains disputed due to the radar scanner being faulty, the fact that Mr Barrett only completed one run and because no one heard the tell-tale sonic boom that usually accompanies the sound barrier being broken.

All the same, no one else came close to the 700 mph mark for another 18 years until Andy Green drove Thrust SSC to 713.990 mph at Black Rock desert in September 1997, and then to 760.343 mph the following month.

Sotheby’s watch specialist Jonathon Burford says the watches relating to the Budweiser Rocket Car run will appeal to a wide range of collectors.

“They are not simply watches, but a part of American history the like of which won’t be seen again,” he told WATCHPRO. “All three were part of a moment in time that epitomizes a spirit of adventure that was so prevalent in America during the 1970s – and they will appeal to everyone from watch purists to motorsport fans and Hollywood memorabilia collectors.

“We have estimated them at what we believe to be realistic levels, but we do believe they are sufficiently significant to attract very strong bidding,” he added.

Mr Barrett says he wore the two steel watches regularly and often for more than 30 years, as did his son, Stanton – until they saw the huge price realised by ‘Newman’s own’ Daytona back in 2017.

“When I saw how much that one sold for I decided that maybe it wasn’t such a smart idea for us to keep wearing the watches that Paul had given me,” he said.

“I’ll be very sad to see them go, but it feels like the right thing to do. I’ll probably give around 30 per cent to the charity Slavic Gospel that I have worked with for the past 35 years and use the rest to pay-off my property loan”.

And unless Mr Barrett has a very large loan, we suspect there might be some left-over.


The sale of the Stan Barrett/Paul Newman Rolex watches will take place at Sotheby’s, York Avenue, New York on 6 December 2022. More details available soon atsothebys.com.

is your relationship toxic ?

img-69

Your relationship may be toxic if it is characterized by behaviors that make you feel unhappy, including disrespect, dishonesty, controlling behaviors, or a lack of support. 

what is a toxic relationship?

In a healthy relationship, everything just kind of works. Sure, you might disagree from time to time or come upon other bumps in the road, but you generally make decisions together, openly discuss any problems that arise, and genuinely enjoy each other’s company. 

Toxic relationships are another story. In a toxic relationship, you might consistently feel drained or unhappy after spending time with your partner, which can suggest that some things need to change. 

Maybe the relationship no longer feels at all enjoyable, though you still love your partner. For some reason, you always seem to rub each other the wrong way or can’t seem to stop arguing over minor issues. You might even dread the thought of seeing them, instead of looking forward to it as you did in the past. 

Below are some hallmark signs of toxicity in a relationship.

what are the signs of a toxic relationship ?

Depending on the nature of the relationship, signs of toxicity can be subtle or highly obvious.

When you’re in a toxic relationship, you might not always find it easy to notice the red flags popping up. All the same, you could notice some of these signs in yourself, your partner, or the relationship itself. 

1. lack of support

img-71

Healthy relationships are based on a mutual desire to see the other succeed in all areas of life. But when things turn toxic, every achievement becomes a competition. 

In short, the time you spend together no longer feels positive. You don’t feel supported or encouraged, and you can’t expect them to care about anything you do. Instead, you might get the impression that your needs and interests don’t matter, that they only care about what they want

2. toxic communication

img-73

Instead of kindness and mutual respect, most of your conversations are filled with sarcasm or criticism and fueled by contempt.

Do you catch yourself making snide remarks to your friends or family members? Maybe you repeat what they said in a mocking tone when they’re in another room. You may even start dodging their calls, just to get a break from the inevitable arguments and hostility.

3. envy or jealousy

img-75

While it’s perfectly fine to experience a little envy from time to time, it can become an issue if your envy keeps you from thinking positively about your partner’s successes.

The same goes for jealousy. Yes, it’s a perfectly natural human emotion. But when it leads to constant suspicion and mistrust, it can quickly begin to erode your relationship. 

4. controlling behaviors

img-77

Does your partner ask where you are all the time? Maybe they become annoyed or irritated when you don’t immediately answer texts or text you again and again until you do. 

These behaviors might stem from jealousy or lack of trust, but they can also suggest a need for control — both of which can contribute to relationship toxicity. In some cases, these attempts at control can also suggest abuse

5. resentment

img-79

Holding on to grudges and letting them fester chips away at intimacy

Over time, frustration or resentment can build up and make a smaller chasm much bigger. Note, too, whether you tend to nurse these grievances quietly because you don’t feel safe speaking up when something bothers you. If you can’t trust your partner to listen to your concerns, your relationship could be toxic. 

6. dishonesty

img-81

You find them constantly making up lies about the whereabouts or who they meet up with.

7. patterns of disrespect

img-83

Often you realize that you are tolerating actions of disrespect that you would never permit from any other person.  

8. negative financial behaviors

img-85

Sharing finances with a partner often involves some level of agreement about how you’ll spend or save your money. That said, it’s not necessarily toxic if one partner chooses to spend money on items the other partner doesn’t approve of.

It can be toxic, though, if you’ve come to an agreement about your finances and one partner consistently disrespects that agreement, whether by purchasing big-ticket items, spending excessively, or withdrawing large sums of money.

9. constant stress

img-87

Ordinary life challenges that come up — a family member’s illness, job loss — can create some tension in your relationship, of course. But finding yourself constantly on edge, even when you aren’t facing stress from outside sources, is a key indicator that something’s off. 

This ongoing stress can take a toll on physical and mental health, and you might frequently feel miserable, mentally and physically exhausted, or generally unwell. 

10. ignoring your needs

img-89

Going along with whatever your partner wants to do, even when it goes against your wishes, is a sure sign of toxicity.

11. lost relationships

img-91

You’ve stopped spending time with friends and family, either to avoid conflict with your partner or to get around having to explain what’s happening in your relationship. 

Alternatively, you might find that dealing with your partner (or worrying about your relationship) occupies much of your free time. 

12. lack of self-care

img-93

In a toxic relationship, you might let go of your usual self-care habits.

You might withdraw from hobbies you once loved, neglect your health, and sacrifice your free time. This might happen because you don’t have the energy for these activities or because your partner disapproves when you do your own thing. 

13. hoping for change

img-95

You might stay in the relationship because you remember how much fun you had in the beginning. Maybe you think that if you just change yourself and your actions, they’ll change as well. 

14. walking on eggshells

img-97

You worry that by bringing up problems, you’ll provoke extreme tension, so you become conflict avoidant and keep any issues to yourself.

“lighting cigars off electric chairs”

the role of the capacitor in music

the capacitor

capacitors

In the realm of passive components, capacitors are second only to resistors in ubiquity. They are everywhere, in almost every electronic device you will ever come across. So it’s no surprise that capacitors are an integral part of audio circuits in general, and guitar effects specifically.

What makes capacitors so important? Well, they can be used to perform some very important functions:

  • DC Blocking:Capacitors pass alternating current (AC), but block direct current (DC)
  • Coupling: Capacitors are used in between various stages in audio circuits
  • Filtering: Capacitors are key elements of filters, such as a tone control
  • Smoothing: Capacitors are used to smooth out ripples and noise in power supplies
  • Timing: Capacitors are used to set the timing of circuits such as low frequency oscillators
  • Storing: Large value capacitors are used to store up energy. For example, the flash of a camera typically uses a capacitor to store and quickly discharge amount of power

Units of Measure

As with all passive components, you need to have a basic understanding of units of measure when working with capacitors. Capacitance is measured in Farads, named after English physicist Michael Faraday. A value of 1 Farad is actually quite high, so we use sub measures as follows:

SymbolNameEquivalence
μFmicro1,000,000μF = 1F
nnano1,000nF = 1μF
ppico1,000pF = 1nF

If you are like me, the concept of base 10 arithmetic is wildly advanced and causes your head to hurt. So I invariably turn to the awesome online and downloadable calculators from http://www.electronics2000.co.uk for doing unit conversions.

Capacitor Types

Although capacitors come in an almost bewildering array of types and sizes, no need to worry. The majority of capacitors in guitar effect designs fall into three types:

  • Electrolytic: Usually for large capacitance values, typically 1μF and above. These are usually polarized, meaning there are positive and negative leads.
  • Film: The most commonly used types, typically in the range of 1nF to 999nF. These are non-polarized and can go in either way.
  • Ceramic: Used for smaller values, typically from 10pF to 999pF. As with Film capacitors, these are non-polarized.

With these basic types in minds, let’s learn a bit more about each.

Voltage Rating

One of the most common questions about choosing capacitors is voltage rating. Different capacitors are rated for different voltage ranges. The best rule of thumb is to choose a capacitor with a voltage rating that is at least twice the operating voltage of your circuit. So if you are building a circuit that runs of 9 volts, choose capacitors with ratings of at least 16 volts.

Electrolytic Capacitors

Electrolytic capacitors are visually distinguished by their ‘can’ form factor. They are commonly used in power supply filtering and decoupling applications. They are usually polarized which means that they have a positive side and a negative side. (See “Non-Polarized Electrolytics”below).

Electrolytic capacitors come in several physical configurations:

axial capacitorsAxial: There are leads coming out either end of the cap. Typically mounted parallel to the board.
radial capacitorRadial: Both leads come out of one end. Typically mounted vertical to the board.
snap-in capacitorsSnap-In: For larger electros, not recommended for DIY stuff because they lack the long leads that make it easy to fit them to a board.
smd capacitorsSMD: Surface mounted device, which are designed to be assembled/soldered by automated devices. Not so user-friendly to human solderers.

The polarity of the electrolytic capacitor is almost always indicated by a printed band. Additionally, the positive lead is usually longer.  

img-109

When working with electrolytic capacitors, here are a few things to keep in mind:

  • Polarity: Most electrolytic capacitors are polarized. Hook them up the wrong way and at best, you’ll block the signal passing through. At worst (for higher voltage applications) they’ll explode.
  • Getting Shocked and Possibly Dying: This is not usually a concern for low-voltage stompbox applications, but for high-voltage circuits, especially tube amplifiers, big electros can hold a charge for quite a while. Before you open up anything that plugs into the wall, google capacitor discharging and approach with caution. See ;Capacitor Fires and Explosions” below.
  • Radial vs. Axial:To maximize the real estate on a PCB, you’ll almost always want to use radial leads. When you order caps, get the radial ones. If you order Axial by mistake, it isn’t hard to bend the leads so as to mount them in a radial, upright configuration.
  • Non-Polarized Electrolytics: To further confound you, electrolytics are made in non-polarized versions. These are rarely used. The only place I’ve seen them is on either side of the first opamp stage in the Tube Screamer.

Ceramic Capacitors

ceramic capacitors

Ceramic caps are typically used for lower capacitance jobs. Values are usually in the picofarad to low nanofarad range. They are ugly looking, and that is about as technical as I’ll get on the whole ceramic vs. film caps debate.

Most folks cannot discern an audible difference between the two types in common stompbox use, so you’ll have to try for yourself. A good rule of thumb is to remember that from an electrical engineering standpoint, film capacitors are generally preferred over ceramics in audio path applications. Ceramics are non-polarized and usually supplied in the radial lead configuration.

The Great Tantalum Debate

img-113

Tantalum capacitors were popular in the eighties in stompbox designs like the Ibanez Tube Screamer and various MXR and DOD designs. The primary benefit of tantalums is that they offer a higher range of capacitance values in package that is physically smaller than electrolytics.

Like electrolytics, they are polarized so you’ll want to get the direction right. Tantalums are *very* susceptible to polarity inversion. In other words, if you hook one up backwards you might as well throw it away–there is a good chance it is cooked.

Do they sound better? Do they sound different? The answer is a definitive yes. No wait, that’s a definitive no. There are many opinions about tants, so I really cannot offer you anything definitive on this subject. I can however, share some of the feedback and comments I’ve heard and read.

  • Replace place all electrolytic caps in the signal path with tantalums for a smoother sound.
    Some folks hear more “grit” and treble with tantalums. Some hear a smoother sound.
  • Replace the .022 tantalum in your tube screamers with a poly film part for better sound, others claim the original part is integral to the true tube screamer sound.
  • Some folks claim tantalums are not as reliable as electrolytics, but this may be mostly due to older composition and packaging types uses in decades past.

As always, your mileage will vary. But this is one of the most wonderful areas of stompbox design–there are so many variations, we’ll probably never get bored. Try the variations yourself until  you find your ideal sound.

Capacitors on the Fringe

There are various esoteric or rare capacitor types that pop up from time to time.

Tropical Fish Caps

These are vintage poly film capacitors that use color codes to denote the capacitance value. Very rare nowadays and expensive too. Some builders like to use them in vintage circuits,especially wah pedals.

The Wima Audio Black Box Audio Cap

Rare, elusive and really expensive. I don’t have much info on these, but some audiophile people swear by them.

Wet Tantalums

Most tantalum caps are of the dry-slug variety. This means that they are composed of dry tantalum powder. Wet-slug tantalums on the other hand use gelled sulfuric acid. For more mojo, I wonder if wet-slug tantalums would be worth trying. Although they are typically used for high temperature and voltage applications, one has to wonder…

Audiophile Parts

In the world of DIY audiophile building, a great emphasis is often placed on capacitor performance. As a result, there are a number of manufacturers of high-end (and expensive) capacitors. I’ll leave the subjective vs. objective argument to the reader. But it does make sense to point out that guitar effects, especially in stompbox format, are not designed to be audiophile devices.

Which Type Should I Choose?

As with all component types, there are pros and cons for each type. In general, the choice of capacitor type will be made for you, either by the author of the schematic you are using, or by the simple factor of capacitance value. In other words, the schematic will specify electrolytic or film by the symbol used. That makes the choice easy.

But what about when a specific type is not specified, only the value is shown? In general, you look at the value specified, and choose the type appropriate for that value. Other factors may influence your choice of capacitor type, particularly in audio circuits. So I’ve include benefits and drawbacks of each type.

Capacitor TypeTypical Value RangeSchematic SymbolBenefittsDrawbacks
Electrolytic>= 1μF
⎯)|₊⎯
Higher capacitance values in smaller packages, Reasonable priceLeakage is higher than most types, service life: Electros typically don’t last near as long as other types. This is typically why tube amps need to be re-capped after a number of years. Tolerance is not great: most passive electronic components have a tolerance rating which denotes how close to the part is to the actual printed value. Tolerance for electrolytics is abysmal, in the 20-40% range, but for stompbox applications, this doesn’t matter.
Film1nF – 999nF⎯||⎯̇Low leakage and they last a long timeLarger values are inordinately physically large
Ceramic1pF – 999pF⎯||⎯InexpensiveFilm caps are usually preferred to ceramic caps where audio performance is a key design factor

Capacitors on Schematics

Here’s what capacitors look like on schematics:

img-115

What about Variable Capacitors?

One of the first questions I had when I started building stompboxes was “I have variable resistors (potentiometers) all over the place. Why don’t I have variable capacitors?” The answer is that they are limited to a very small capacitance and are quite expensive too. As such, they are not practical for stompbox usage.

Here’s a trick to simulate a variable capacitor, especially useful for tone control applications. Attach two different capacitor values to a potentiometer–moving the wiper then sends more or less of the signal to one of the caps thereby changing the frequency response.

img-117

Capacitor Fires and Explosions

Like other components, capacitors can explode, burn, and/or stink when they are voltage-abused. Here are some fun fire and explosion pictures. Note that many capacitors were harmed during these experiments.

Some builders have intimated that tantalum capacitors smell the worst when on fire. This is a very useful piece of engineering knowledge to have.

The Application of Capacitors in Stompboxes

So now we are familiar with the basics of capacitors, how can we use them in stompboxes? In a surprisingly large number of ways actually.

Power Supply Filtering

In the context of stompboxes, power supply is a low voltage (usually 1.5-18 volts) direct current. The battery is a pretty ideal power source for stompboxes. As long as the battery isn’t dying or depleted, it doesn’t fluctuate wildly or introduce DC ripple into the equation. So if you are running solely on battery power, you really don’t need to worry much about filtering.

Power supplies, like the ubiquitous unregulated black wall warts on the other hand aren’t so ideal. If you are sure that your stompbox design will only ever see external voltage as supplied by a nicely regulated and filtered AC adaptor, then you don’t need to design in filtering. But in the real world, such assurances are not available. You have to assume that at some point you (or the person you build stompboxes for) will plug in a cheap nasty Szechuan special and noise and nastiness will result.

Of course, it is interesting to note that many stompbox schematics will include no filtering at all, and for the majority of uses, that is actually ok. Filtering really becomes an issue when your circuit is presented with a crappy power supply or fluctuating “crazy Ivan” mains voltage.

A wall wart uses a transformer to step down the mains voltage to a pedal friendly 9-11 volts or so (for a 9v adaptor) and then converts AC into DC using a 4-diode bridge rectifier. The rectifier flips all the waveform swings of the AC voltage but still results in some “ripple” in the DC waveform. Ripple equates to noise in your circuit. The simplest way to get rid of this ripple is to tack a largish-value electrolytic cap from the power supply to ground to smooth things out. For most stompbox designs, this works just great. Let’s look at an example.

Here we simply add a 100uf polarized electrolytic from the power supply line to ground to reduce ripple:

img-119

Finally, there is an additional electrolytic on the bias voltage (C3) which smoothes out the bias supply.

img-120

A parting note on caps in power supplies. For amplifier circuits, you’ll see big electrolytic cans in the power supply section that you don’t see in stompboxes. These act as “reservoirs” of current to handle short spikes in power demands from the amplifier and to smooth out the available pool of current.

The Input and Output Caps

Almost every stompbox design has these two caps. As we talk about these, keep in mind the following schematic of the Electro Harmonix LPB booster (I’m using this one because it has input and output caps and is about as simple a circuit as you can find.)

img-121

The input cap (C1), if you haven’t already guessed, is attached at or very near the input. The purpose of the input cap is to form a high-pass filter, in conjunction with a resistor (here the R2 part). It also acts to stabilize the rest of the circuit from the input which is usually a guitar, bouzouki, or another pedal. The key point here is:

The value of the input cap directly controls any frequency attenuation that happens before the signal hits the main effect circuitry.

Now on to the output cap. In our schematic above, that’s the C2 value. The output cap serves two purposes. First, like the input cap, it can serve as part of an RC network to attenuate or pass certain frequencies. If you want the full frequency range, a value from 100nf to 1uf can be used. The output cap also serves to remove any direct current from the signal. Remember that our stompbox designs almost all run on direct current–we want to be sure none if it escapes from the output jack, so an electrolytic cap will do the job nicely.

Input and Output Capacitor Values from Various Classic Stompbox Circuits
CircuitInput CapOutput Cap
Ibanez Tube Screamer.027uf film10uf electrolytic
ProCo Rat22nf film1uf electrolytic
Boss DS-1.047 film1uf electrolytic
Dallas Rangemaster.005uf.01 uf film
Dallas Fuzz Face2.2uf electrolytic.01 uf film

Let’s say you are building a treble-booster–you would want to attenuate any low frequency content before it hit the amplifier circuit. So you would put in a lower value input cap to accomplish this. The Dallas Rangemaster, perhaps the most famous of all treble boosters, has an incredibly small .005 uf cap.

img-122

Another great example of the effect of cap values on frequency response isa href=”http://folkurban.com/Site/LofoMofo-724.html”>Tim Escobedo’s LoFoMoFo. Look at the very small values for the input, output and shunting caps (R1, R3 and R2, respectively). These parts conspire to remove pretty much all the bass content of the input signal:

img-123

Alternatively, let’s say you want the majority of the useful frequency content to be passed through–in this case you would use a larger value cap, say 100nf-1uf. A rule of thumb is that a 1uf capacitor, input or output, will allow all guitar frequencies to pass through.

Filters

Variable Low-Pass Filter

Here we use a small value cap (500pf up to 50nf is a good range for experimentation) wired in the signal path of a circuit. If the pot’s wiper is at the full open position (no resistance) the signal will bypass the cap and go straight through. But as the resistance is increased, more signal will pass through the cap which will attenuate higher frequencies.

img-124

Another way to implement a low pass filter is to used a potentiometer in series with a capacitor to ground. This type of configuration can be spliced into the signal path of a circuit, but it should be noted that there is some signal loss. This is the case with all such passive circuits. Usually, there is a gain stage after a passive tone control to boost the signal lost in the passive section. For example, look at the last transistor stage in the Big Muff Pi circuit: it’s function is to make up for the signal loss in the preceding tone control.

img-126

Smoothing Diode Clipping

You can add a small-value capacitor in parallel with a diode clipping arrangement to smooth out the high-end of the clipping. This is a somewhat interesting area for experimentation.

img-127

Capacitors for Timing

Another common use for capacitors is to control the time interval of a circuit. For example, in a low-frequency oscillator, a capacitor is used in conjunction with a potentiometer to set the frequency. Our first example is a simple LFO based on the 40106 Hex inverting Schmitt trigger. The combination of C1 and VR1 set the frequency:

img-128

Next, we have a classic 555 basic monostable oscillator. In this configuration, the frequency is set by a combination of R1 and C1.

img-129